sábado, 2 de abril de 2011

Acido Nucleico - En español

el ciclo del agua

EL AGUA

es una sustancia cuya molécula está formada por dos átomos de hidrógeno y uno de oxígeno (H2O). Es esencial para la supervivencia de todas las formas conocidas de vida. El término agua, generalmente, se refiere a la sustancia en su estado líquido, pero la misma puede hallarse en su forma sólida llamada hielo, y en forma gaseosa denominada vapor. El agua cubre el 71% de la superficie de la corteza terrestre.[2] Se localiza principalmente en los océanos donde se concentra el 96,5% del agua total, los glaciares y casquetes polares poseen el 1,74%, los depósitos subterráneos (acuíferos), los permafrost y los glaciares continentales suponen el 1,72% y el restante 0,04% se reparte en orden decreciente entre lagos, humedad del suelo, atmósfera, embalses, ríos y seres vivos.

Las propiedades fisicoquímicas más notables del agua son:
  • El agua bloquea sólo ligeramente la radiación solar UV fuerte, permitiendo que las plantas acuáticas absorban su energía.
  • La capilaridad se refiere a la tendencia del agua de moverse por un tubo estrecho en contra de la fuerza de la gravedad. Esta propiedad es aprovechada por todas las plantas vasculares, como los árboles.
  • El punto de ebullición del agua (y de cualquier otro líquido) está directamente relacionado con la presión atmosférica. Por ejemplo, en la cima del Everest, el agua hierve a unos 68º C, mientras que al nivel del mar este valor sube hasta 100º. Del mismo modo, el agua cercana a fuentes geotérmicas puede alcanzar temperaturas de cientos de grados centígrados y seguir siendo líquida.Su temperatura crítica es de 373,85 °C (647,14 K), su valor específico de fusión es de 0,334 kJ/g y su índice específico de vaporización es de 2,23kJ/g.
  • El agua es miscible con muchos líquidos, como el etanol, y en cualquier proporción, formando un líquido homogéneo. Por otra parte, los aceites son inmiscibles con el agua, y forman capas de variable densidad sobre la superficie del agua. Como cualquier gas, el vapor de agua es miscible completamente con el aire.
  • El agua pura tiene una conductividad eléctrica relativamente baja, pero ese valor se incrementa significativamente con la disolución de una pequeña cantidad de material iónico, como el cloruro de sodio.
  • El agua tiene el segundo índice más alto de capacidad calorífica específica —sólo por detrás del amoníaco— así como una elevada entalpía de vaporización (40.65 kJ mol-1); ambos factores se deben al enlace de hidrógeno entre moléculas. Estas dos inusuales propiedades son las que hacen que el agua "modere" las temperaturas terrestres, reconduciendo grandes variaciones de energía.

Animación de cómo el hielo pasa a estado líquido en un vaso. Los 50 minutos transcurridos se concentran en 7 segundos.
  • La densidad del agua líquida es muy estable y varía poco con los cambios de temperatura y presión. A la presión normal (1 atmósfera), el agua líquida tiene una mínima densidad (0,958 kg/l) a los 100 °C. Al bajar la temperatura, aumenta la densidad (por ejemplo, a 90 °C tiene 0,965 kg/l) y ese aumento es constante hasta llegar a los 3,8 °C donde alcanza una densidad de 1 kg/litro. Esa temperatura (3,8 °C) representa un punto de inflexión y es cuando alcanza su máxima densidad (a la presión mencionada). A partir de ese punto, al bajar la temperatura, la densidad comienza a disminuir, aunque muy lentamente (casi nada en la práctica), hasta que a los 0° disminuye hasta 0,9999 kg/litro. Cuando pasa al estado sólido (a 0 °C), ocurre una brusca disminución de la densidad pasando de 0,9999 kg/l a 0,917 kg/l.
  • Como un óxido de hidrógeno, el agua se forma cuando el hidrógeno —o un compuesto conteniendo hidrógeno— se quema o reacciona con oxígeno —o un compuesto de oxígeno—. El agua no es combustible, puesto que es un producto residual de la combustión del hidrógeno. La energía requerida para separar el agua en sus dos componentes mediante electrólisis es superior a la energía desprendida por la recombinación de hidrógeno y oxígeno. Esto hace que el agua, en contra de lo que sostienen algunos rumores, no sea una fuente de energía eficaz.

El ciclo del agua

Con ciclo del agua —conocido científicamente como el ciclo hidrológico— se denomina al continuo intercambio de agua dentro de la hidrosfera, entre la atmósfera, el agua superficial y subterránea y los organismos vivos. El agua cambia constantemente su posición de una a otra parte del ciclo de agua, implicando básicamente los siguientes procesos físicos:

martes, 29 de marzo de 2011

VITAMINAS

Las vitaminas (del latín vita (vida) + el griego αμμονιακός, ammoniakós "producto libio, amoníaco", con el sufijo latino ina "sustancia") son compuestos heterogéneos imprescindibles para la vida, que al ingerirlos de forma equilibrada y en dosis esenciales promueven el correcto funcionamiento fisiológico. La mayoría de las vitaminas esenciales no pueden ser sintetizadas (elaboradas) por el organismo, por lo que éste no puede obtenerlas más que a través de la ingesta equilibrada de vitaminas contenidas en los alimentos naturales. Las vitaminas son nutrientes que junto a otros elementos nutricionales actúan como catalizadoras de todos los procesos fisiológicos (directa e indirectamente).

Clasificación de las vitaminas

Las vitaminas se pueden clasificar según su solubilidad: si lo son en agua hidrosolubles o si lo son en lípidos liposolubles. En los seres humanos hay 13 vitaminas, 9 hidrosolubles (8 del complejo B y la vitamina C) y 4 liposolubles (A, D, E y K).

Recomendaciones para evitar deficiencias de vitaminas

La principal fuente de vitaminas son los vegetales crudos, por ello, hay que igualar o superar la recomendación de consumir 5 raciones de vegetales o frutas frescas al día.
Hay que evitar los procesos que produzcan perdidas de vitaminas en exceso:
  • Hay que evitar cocinar los alimentos en exceso. A mucha temperatura o durante mucho tiempo.
  • Echar los alimentos que se vayan a cocer, en el agua ya hirviendo, en vez de llevar el agua a ebullición con ellos dentro.
  • Evitar que los alimentos estén preparados (cocinados, troceados o exprimidos), mucho tiempo antes de comerlos.
  • La piel de las frutas o la cáscara de los cereales contiene muchas vitaminas, por lo que no es conveniente quitarla.
  • Elegir bien los alimentos a la hora de comprarlos, una mejor calidad redunda en un mayor valor nutritivo.
Aunque la mayoría de los procesamientos perjudica el contenido vitamínico, algunos procesos biológicos pueden incrementar el contenido de vitaminas en los alimentos, como por ejemplo:
Los procesos industriales, normalmente suelen destruir las vitaminas. Pero alguno puede ayudar a que se reduzcan las pérdidas:
  • El vaporizado del arroz consigue que las vitaminas y minerales de la cáscara se peguen al corazón del arroz y no se pierda tanto al quitar la cáscara.
    Hay que recordar que el arroz con cáscara tiene 5 veces más vitamina b1 (y otras vitaminas) que el que está pelado.
  • La congelación produce pérdidas en la calidad de las moléculas de algunas vitaminas inactivando parte de ellas, es mejor consumir los alimentos 100% frescos.
  • Los procesos de esterilización UHT, muy rápidos, evitan un exceso de pedidas vitaminas que un proceso más lento bien puede neutralizar el efecto de algunas enzimas destructoras de vitaminas como las que se encuentran dispersas en el jugo de naranja.
No consumir vitaminas en los niveles apropiados (contenidas en los alimentos naturales) puede causar una grave enfermedad

SALES MINERALES

Las sales minerales son moléculas inorgánicas de fácil ionización en presencia de agua y que en los seres vivos aparecen tanto precipitadas como disueltas como asociadas.
Las sales minerales disueltas en agua siempre están ionizadas. Estas sales tienen función estructural y funciones de regulación del pH, de la presión osmótica y de reacciones bioquímicas, en las que intervienen iones específicos. Participan en reacciones químicas a niveles electrolíticos.

Fuentes alimentarias de minerales

Sales minerales en los seres vivos

Los procesos vitales requieren la presencia de ciertas sales bajo la forma de iones como los cloruros, los carbonatos y los sulfatos.
  • Los minerales se pueden encontrar en los seres vivos como sales minerales de tres formas:

Precipitadas

Constituyen
En forma precipitada, las sales minerales, forman estructuras duras, que proporcionan estructura o protección al ser que las posee. Tambien actuan en funcion reguladora. Ejemplo Otolitos

 Disueltas

Las sales disueltas en agua manifiestan cargas positivas o negativas. Los cationes más abundantes en la composición de los seres vivos son Na+, K+, Ca2+, Mg2+, NH4+. Los aniones más representativos en la composición de los seres vivos son Cl, PO43−, CO32−, HCO3. Las sales disueltas en agua pueden realizar funciones tales como:

martes, 22 de marzo de 2011

ACIDOS NUCLEICOS

Los ácidos nucleicos son macromoléculas, polímeros formados por la repetición de monómeros llamados nucleótidos, unidos mediante enlaces fosfodiéster. Se forman, así, largas cadenas o polinucleótidos, lo que hace que algunas de estas moléculas lleguen a alcanzar tamaños gigantes (de millones de nucleótidos de largo).

Tipos de ácidos nucleicos
Artículo principal: Estructura del ácido nucleico
Existen dos tipos de ácidos nucleicos: ADN (ácido desoxirribonucleico) y ARN (ácido ribonucleico), que se diferencian:

 ADN

El ADN es bicatenario, está constituido por dos cadenas polinucleotídicas unidas entre sí en toda su longitud. Esta doble cadena puede disponerse en forma lineal (ADN del núcleo de las células eucarióticas) o en forma circular (ADN de las células procarióticas, así como de las mitocondrias y cloroplastos eucarióticos). La molécula de ADN porta la información necesaria para el desarrollo de las características biológicas de un individuo y contiene los mensajes e instrucciones para que las células realicen sus funciones. Dependiendo de la composición del ADN (refiriéndose a composición como la secuencia particular de bases), puede desnaturalizarse o romperse los puentes de hidrógenos entre bases pasando a ADN de cadena simple o ADNsc abreviadamente.

Excepcionalmente, el ADN de algunos virus es monocatenario, es decir, está formado por un solo polinucleótido, sin cadena complementaria.

 

ARN

 El ARN difiere del ADN en que la pentosa de los nucleótidos constituyentes es ribosa en lugar de desoxirribosa, y en que, en lugar de las cuatro bases A, G, C, T, aparece A, G, C, U (es decir, uracilo en lugar de timina). Las cadenas de ARN son más cortas que las de ADN, aunque dicha característica es debido a consideraciones de carácter biológico, ya que no existe limitación química para formar cadenas de ARN tan largas como de ADN, al ser el enlace fosfodiéster químicamente idéntico. El ARN está constituido casi siempre por una única cadena (es monocatenario), aunque en ciertas situaciones, como en los ARNt y ARNr puede formar estructuras plegadas complejas.

Mientras que el ADN contiene la información, el ARN expresa dicha información, pasando de una secuencia lineal de nucleótidos, a una secuencia lineal de aminoácidos en una proteína. Para expresar dicha información, se necesitan varias etapas y, en consecuencia, existen varios tipos de ARN:

  • El ARN mensajero se sintetiza en el núcleo de la célula, y su secuencia de bases es complementaria de un fragmento de una de las cadenas de ADN. Actúa como intermediario en el traslado de la información genética desde el núcleo hasta el citoplasma. Poco después de su síntesis sale del núcleo a través de los poros nucleares asociándose a los ribosomas donde actúa como matriz o molde que ordena los aminoácidos en la cadena proteica. Su vida es muy corta: una vez cumplida su misión, se destruye.
  • El ARN de transferencia existe en forma de moléculas relativamente pequeñas. La única hebra de la que consta la molécula puede llegar a presentar zonas de estructura secundaria gracias a los enlaces por puente de hidrógeno que se forman entre bases complementarias, lo que da lugar a que se formen una serie de brazos, bucles o asas. Su función es la de captar aminoácidos en el citoplasma uniéndose a ellos y transportándolos hasta los ribosomas, colocándolos en el lugar adecuado que indica la secuencia de nucleótidos del ARN mensajero para llegar a la síntesis de una cadena polipeptídica determinada y por lo tanto, a la síntesis de una proteína.
  • El ARN ribosómico es el más abundante (80 por ciento del total del ARN), se encuentra en los ribosomas y forma parte de ellos, aunque también existen proteínas ribosómicas. El ARN ribosómico recién sintetizado es empaquetado inmediatamente con proteínas ribosómicas, dando lugar a las subunidades del ribosoma.

 

AMINOACIDOS

Un aminoácido es una molécula orgánica con un grupo amino (-NH2) y un grupo carboxílico (-COOH; ácido). Los aminoácidos más frecuentes y de mayor interés son aquellos que forman parte de las proteínas Todos los aminoácidos componentes de las proteínas son alfa-aminoácidos. Por lo tanto, están formados por un carbono alfa unido a un grupo carboxilo, a un grupo amino, a un hidrógeno y a una cadena (habitualmente denominada R) de estructura variable, que determina la identidad y las propiedades de los diferentes aminoácidos; existen cientos de cadenas R por lo que se conocen cientos de aminoácidos diferentes, pero sólo 20 forman parte de las proteínas y tienen codones específicos en el código genético.

CLASIFICACION

segun las propiedades de su cadena
Los aminoácidos se clasifican habitualmente según las propiedades de su cadena lateral:
  • Neutros no polares, apolares o hidrófobos: Glicina (Gly, G), Alanina (Ala, A), Valina (Val, V), Leucina (Leu, L), Isoleucina (Ile, I), Metionina (Met, M), Prolina (Pro, P), Fenilalanina (Phe, F) y Triptófano (Trp, W).
  • Con carga negativa, o ácidos: Ácido aspártico (Asp, D) y Ácido glutámico (Glu, E).
  • Con carga positiva, o básicos: Lisina (Lys, K), Arginina (Arg, R) e Histidina (His, H).
  • Aromáticos: Fenilalanina (Phe, F), Tirosina (Tyr, Y) y Triptófano (Trp, W) (ya incluidos en los grupos neutros polares y neutros no polares).
Según su obtención
A los aminoácidos que necesitan ser ingeridos por el cuerpo se los llama esenciales; la carencia de estos aminoácidos en la dieta limita el desarrollo del organismo, ya que no es posible reponer las células de los tejidos que mueren o crear tejidos nuevos, en el caso del crecimiento. Para el ser humano, los aminoácidos esenciales son:
A los aminoácidos que pueden ser sintetizados por el cuerpo se los conoce como no esenciales y son: